Q:

The base of pyramid A is a rectangle with a length of 10 meters and a width of 20 meters. The base of pyramid B is a square with 10-meter sides.The heights of the pyramids are the same.The volume of pyramid A isthe volume of pyramid B. If the height of pyramid B Increases to twice that of pyramid A, thenew volume of pyramid Bisthe volume of pyramid A

Accepted Solution

A:
Answer:Volume of pyramid A is twice the volume of pyramid B.If the height of pyramid B increases to twice that of pyramid A, it's volume will be equal to the volume of pyramid A.Step-by-step explanation:Let, the initial height of each pyramids be h metreBase area of pyramid A =[tex]10 \times 20[/tex] sq. metre                                          = 200 sq. metreBase area of pyramid B =[tex](10^{2})[/tex] sq. metre                                          = 100 sq. metrewe know that volume of a pyramid = [tex]\frac{base area \times  height}{3}[/tex] -------------(1)So, from (1)volume of pyramid A = [tex]\frac{200 \times h}{3}[/tex] cubic metre -----(2)volume of pyramid B = [tex]\frac{100 \times h}{3}[/tex] cubic metre -----(3)So, volume of pyramid A is twice the volume of pyramid B.If the height of pyramid B increases to twice that of pyramid A, it's volume will be equal to the volume of pyramid A.